Solid State Inflation Balloon Active Deorbiter

NASA

Completed Technology Project (2015 - 2017)

Project Introduction

The Solid State Inflation Balloon (SSIB) is a simple, reliable, low-cost, non-propulsive system for deliberate deorbit and control of downrange point-of-impact that is compatible with a full range of smallsats from 1kg to 180kg in mass, and includes built-in redundancy for enhanced reliability and safety. The gas generator contains a MEMS Solid-State Gas Generator chip and scalable array of microwells with precisely filled quantities of sodium azide. Integrated heaters decompose this into nitrogen gas to inflate a metalized polyimide balloon, allowing interactions with solar radiation pressure and the upper atmosphere to provide deorbiting drag. The total mass of the SSGG is expected to be ~ 10 grams, while the power consumption of the heater is ~ 10 mW (for sequential operations of one well at a time).

Anticipated Benefits

The successful development of the SSIB provides NASA a low cost technology for end-of-life or sample-return deorbit and control of downrange point-of-impact. It is compatible with a full range of masses from 1kg to 180kg, from CubeSats to MicroSats..

Primary U.S. Work Locations and Key Partners

Solid State Inflation Balloon Active Deorbiter

Table of Contents

Project Introduction	1
Anticipated Benefits	1
Primary U.S. Work Locations	
and Key Partners	1
Organizational Responsibility	1
Project Transitions	2
Project Website:	2
Project Management	2
Technology Maturity (TRL)	2
Target Destination	2

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

University of Arkansas

Responsible Program:

Small Spacecraft Technology

Small Spacecraft Technology

Solid State Inflation Balloon Active Deorbiter

Completed Technology Project (2015 - 2017)

Organizations Performing Work	Role	Туре	Location
University of Arkansas	Lead Organization	Academia Alaska Native and Native Hawaiian Serving Institutions (ANNH)	Fayetteville, Arkansas
Ames Research Center(ARC)	Supporting Organization	NASA Center	Moffett Field, California

Primary U.S. Work Locations	
Arkansas	California

Project Transitions

October 2015: Project Start

October 2017: Closed out

Closeout Summary: The project demonstrated balloon inflation to ~ 0.6 m in v acuum chamber environment. The scalability of the design easily allows future a chievement of targeted balloon volume by enlarging the microwell size.

Project Website:

https://www.nasa.gov/directorates/spacetech/home/index.html

Project Management

Program Director:

Christopher E Baker

Program Manager:

Roger Hunter

Principal Investigator:

Po-hao A Huang

Technology Maturity (TRL)

Target Destination

Earth

